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We may now recall that all conservative schemes, in the absence of any con-
tribution to Ap from source terms, lead to Ap = — 3, A, + AL, where A}
is the contribution from the unsteady term. If a steady solution is sought
through iterating for an infinite time step, AL = 0, but we have to use
under-relaxation, as explained in Sect. 5.4.2. In that case, Ap = — Y, 4;/ay,
where «,, is the under relaxation factor for veloc1t1es (usually the same for

ap=1-—ay, (7.50)

which has been found to be nearly optimum and yields almost the same
convergence rate for outer iterations as the SIMPLEC method.

The solution algorithm for this class of methods can be summarized as
follows:

1. Start calculation of the fields at the new time ¢, using the latest solu-
tion 4} and p" as starting estimates for u*' and p+!.

2. Assemble and solve the linearized algebraic equation systems for the ve-

locity components (momentum equations) to obtain u[™*.

Assemble and solve the pressure-correction equation to obtain p'.

4. Correct the velocities and pressure to obtain the velocity field ™, which
satisfies the continuity equation, and the new pressure p™
For the PISO algorithm, solve the second pressure-correction equation
and correct both velocities and pressure again.
For SIMPLER, solve the pressure equation for p™ after u!" is obtained
above.

5. Return to step 2 and repeat, using u[* and p™ as improved estimates for

u! and p™*1, until all corrections are negligibly small.
6. Advance to the next time step.

o=

Methods of this kind are fairly efficient for solving steady state prob-
lems; their convergence can be improved by the multigrid strategy, as will be
demonstrated in Chap. 11. There are many derivatives of the above methods
which are named differently, but they all have roots in the ideas described
above and will not be listed here. We shall show below that the artificial
compressibility method can also be interpreted in a similar way.

7.4 Other Methods

7.4.1 Fractional Step Methods

In the methods of the preceding section, the pressure is used to enforce con-
tinuity. It is also used in computing the velocity field in the first step of the
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method: in this step, the pressure is treated explicitly. Why use it at all? The
fractional step method of Kim and Moin (1985) provides an approach that
does not use pressure in the predictor step. It is also important to recall that
the role of the pressure in an incompressible flow is to enforce continuity; in
some sense, it is more a mathematical variable than a physical one.

The fractional step concept is more a generic approach than a particular
method. It is based on ideas similar to those that led to the alternating direc-
tion implicit method in Chap. 5. It is essentially an approximate factorization
of a method; the underlying method need not be implicit. To see how this
might work, we take the simplest case, the Euler explicit advancement of the
Navier-Stokes equations in symbolic form:

u™t = u + (Ci+ D; + P) At (7.51)

where C;, D;, and P; represent the convective, diffusive and pressure terms,
respectively. This equation is readily split into a three step method:

ui = ug + (Cy) At (7.52)
ui™ = ui +(Di)At (7.53)
uft! = ul* + (P) At (7.54)

In the third step, P; is the gradient of a quantity that obeys a Poisson equa-
tion; naturally, this quantity must be chosen so that the continuity equation
is satisfied. Depending on the particulars of the method, the source term in
this Poisson equation may differ slightly from the source term in the standard
Poisson equation for the pressure (7.21); for this reason, the variable is called
the pseudo-pressure or a pressure-like variable. Also, note that it is possible
to split the convective and diffusive terms further; for example, they may
be split into their components in the various coordinate directions. Clearly,
many basic methods can be used and many kinds of splitting can be applied
to each.

We now present a particular fractional step method; again, many varia-
tions are possible.

For unsteady flows, a time accurate method such as a third or fourth order
Runge-Kutta method (if an explicit method suffices) or the Crank-Nicolson
or second order backward method (if more stability is required) is used. For
steady flows, in order to take a large time step, an implicit method should be
used; linearization and an ADI method may be used to solve the equations.
Spatial discretization can be of any type described above. We shall use the
semi-discrete form of equations and the Crank-Nicolson scheme; a similar
method based on central difference approximations in space was used by
Choi and Moin (1994) for direct simulations of turbulence.

In the first step, the velocity is advanced using pressure from the previous
time step; convective terms, viscous terms, and body forces (if present) are
represented by an equal blend of old and new values (Crank-Nicolson method
in this particular case):
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where H (u;) is an operator representing the discretized convective, diffusive,
and source terms. This system of equations must be solved for u}; any method
can be used. Unless the time step is very small, one should iterate to account
for the non-linearity of the equations; Choi et al. (1994) used a Newton
iterative method.

In the second step, half of the old pressure gradient is removed from uy,
Ipar]ing to u;‘*;

(pui)™ — (pus)™ _ 16p"
At 2 5.’Ei )

(7.56)

The final velocity at the new time level requires the gradient of the (as yet
unknown) new pressure:

(pua)"*t = (pui)** _ _146p™*!
At 2 5:1%' '

(7.57)

The requirement that the new velocity satisfy the continuity equation leads
to a Poisson equation for the new pressure:
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Upon solution of the pressure equation, the new velocity field is obtained from
Eq. (7.57). It satisfies the continuity equation and the momentum equation
in the form:

(pug)™ ' = (pu)» 1 w1 [dp*  gprt!
T =5 [H (u}) + H(u})] 5 \ 5o + 5 . (7.59)

For this equation to represent the Crank-Nicolson method correctly, H (u})
should be replaced by H(u}*"). However, from Egs. (7.56) and (7.57) one
can easily show that the error is of second order in time and thus consistent

with other errors:

) n+i __ .n 2
_Bedr —v") (A7 4 [apy (7.60)
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Note that, by subtracting Eq. (7.55) from Eq. (7.59), one obtains an equation
for the pressure correction p’ = p*+1 — pn:
(pu)™ — (pu)* __ 13p

=——— .61
At 2(5:17@ (76)

n-4-1 *

The Poisson equation for p’ has the same form as Eq. (7.58), except that u}*
is replaced by u}.
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Fractional step methods have become rather popular. There is a wide
variety of them, due to a vast choice of approaches to time and space dis-
cretization; however, they are all based on the principles described above.

The major difference between the fractional-step method and pressure-
correction methods of the SIMPLE-type is that in the former, the pressure
(or pressure-correction) equation is solved once per time step, while in the lat-
ter, both the momentum and pressure-correction equations are solved several
times within each time step (outer iterations). This is largely because frac-
tional step methods are used mainly in unsteady flow simulations while the
latter are used predominantly to compute steady flows. Since, in SIMPLE-
type methods, mass conservation is enforced only at the end of a time step,
the pressure-correction equation need not be solved accurately on each outer
iteration (reduction of the residual by one order of magnitude usually suf-
fices). Indeed, for steady flows, accurate satisfaction of the continuity con-
dition is required only at convergence. In simulations of unsteady flows, the
pressure {or pressure-correction) equation must be solved to a tight tolerance
to ensure mass conservation at each time step. Multigrid or spectral methods
are usually used to solve the Poisson equation for the pressure in unsteady
flow simulations in simple geometries while, for steady flows or complex ge-
ometries, the linear equations are usually solved using conjugate-gradient
methods.

If the time step is large, the fractional step method produces an error due
to the operator splitting, as shown in Eq. (7.60). This error can be elimi-
nated either by reducing the time step or by using iteration of the kind used
in SIMPLE-type methods. However, if the splitting error is significant, the
temporal discretization error is also large. Therefore, reducing the time step
is the most appropriate means of improving accuracy. Note that the PISO-
method introduced in the preceding section is very similar to the fractional-
step method and has a splitting error proportional to (At)?.

7.4.2 Streamfunction-Vorticity Methods

For incompressible two-dimensional flows with constant fluid properties, the
Navier-Stokes equations can be simplified by introducing the streamfunction
¥ and vorticity w as dependent variables. These two quantities are defined in
terms of Cartesian velocity components by:
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and
Ou, Oug
= —= — .63
Y= oz Oy (4:68)

Lines of constant 1 are streamlines (lines which are everywhere parallel to the
flow), giving this variable its name. The vorticity is associated with rotational



